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(Rrreired: November 6, 1993) 

A nonlinear regression procedure for fitting estimates of an associ- 
ation constant and saturation shifts to NMR titration experiments 
under fast-exchange conditions is  described. The method assigns 
weights to each observation by propagating measurement errors 
through the fitted model. A series of Monte Carlo studies simulat- 
ing a variety of possible experimental conditions has shown this 
method lo be significantly superior to other methods commonly in 
use. 

I. INTRODUCTION 

A primary goal of research in molecular recognition is 
development of an understanding of how and why inter- 
molecular association processes occur. Studies of small 
(compared to biological structures) model systems allow 
quuntirutit3e comparisons of related systems, and thus the 
possibility of uncovering the fundamental natures of the 
interactions responsible for noncovalent binding. 

The most common approach to obtaining quantitative 
binding data has been the NMR titration approach. If 
complexation induces significant chemical shift changes 
in the guest andor host, NMR provides an ideal probe of 
binding. In  the overwhelming majority of cases, com- 
plexation/decomplexation is fast on the NMR timescale. 
The observed chemical shift then is a weighted average 
of free and bound shifts, where the weighting factor F is 
the fraction of the species bound (eq. 1). The fraction F 
depends on the association constant K and the total con- 
centrations of host and guest, [HI, and [GI,. Equation 1 
readily rearranges to equation 2 ,  where D = 6free - 
hound. The equilibrium relation 

*Corresponding author: 

and the mass balance relations [HI, = [HOG] + [HI and 
[GI, = [H]*G] + [GI combine to give the expression for 
F (eq. 3) .  

‘obs = - F ,  + %boundF (1) 

I 

(3) 

By varying the concentrations and thus the fraction 
bound, one can produce a “titration” series. A nonlinear 
fit of the data then determines the two unknown parame- 
ters: the association constant, K ;  and the saturation 
chemical shift of the guest D.’ Many discussions of the 
different ways to perform such an experiment and to ex- 
tract the K and D values have been given, and general 
guidelines are a ~ a i l a b l e . ~ , ~  

We have been interested for some time in two aspects 
of this problem. 

1) What is the optimal way to obtain K and D from an 
NMR experiment? 

2 )  What are meaningful error bars for these derived 
quantities? 

In the present work we will address the first question. 
We will make use of a suite of programs designed to 
evaluate the statistical significance of many aspects of 
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122 BARRANS E T A  L 

the NMR titration problem - and thus question 2 - but 
the details of these programs will be provided 
el~ewhere."~ 

For the present purposes we shall assume the reader 
has some familiarity with the NMR technique as applied 
to molecular recognition problems. We also assume that 
1 : 1 binding has been established, and only this type of 
binding is considered. Of course, in actual experiments 
there are often complications due to 1 :2 or 2: 1 binding. 
Also, it is worth emphasizing here, as has often been 
done before,'*2 that, in an actual experiment, the investi- 
gator should be sure that the species being observed un- 
dergo a large change in the 8 bound during the course of 
the experiment. These issues of experimental design are, 
of course, important, but are not the issue here. Here we 
investigate which is the best way to evaluate a data set 
once it is acquired. 

The quantities D and K cannot be directly measured. 
However, estimates of D and K may be evaluated by 
substituting them, along with measured values of the ex- 
planatory variables [HI,, [GI, and 6free, into eqs. 2 and 3 .  
This leads to 6,,,,, the predicted value of the response 
variable aObb. If the model is correct, if the measurements 
are performed without error, and if the estimates of K 
and D are equal to the true values of these parameters, 
then the predicted 6,,,, and measured 6ohs will be identi- 
cal. Measurement errors. however, will make the obser- 
vations deviate from their predicted values, even if the 
model and parameters are correct. 

Least-squares estimation. 
Nonetheless, a good model should duplicate the ob- 
served data as closely as possible. This is reflected in the 
criteria used for finding parameter estimates. Irr least- 
squares estimation, the parameters are adjusted to mini- 
mize the unweighted sum of squared residuals (SSR). 
For an experiment involving observations of P protons 
in each of N samples, this score is given in eq. 4 

P N  

Minimization of SSR is not the only useful criterion 
for evaluating parameter estimates. The real objective of 
parameter estimation is not merely to find a model to fit 
some data set, but to find the true parameter values. To 
that end, if a number of experiments are performed to 
evaluate K and D of some hostfguest system, a good esti- 
mation procedure should determine values from all of 
these experiments that are narrowly distributed about the 
true values. An estimator may thus be evaluated by its 
bias and variance. Bias is the difference between the ex- 
pectation, or mean, of the estimator and the true value of 
the parameter. An ideal estimator is unbiased: its expec- 
tation is exactly the true parameter value. The variance 

of a random variable is the average square of the differ- 
encc between a given occurrence of the variable and the 
variable's true mean. This is a measure of the spread of 
the variable: a small variance means that the variable's 
distribution is very compact. A good estimator thus has a 
small bias and a small variance. 

The popularity of least squares arises from several 
considerations. In the first place, it is familiar and conve- 
nient. Furthermore, it has optimal properties in certain 
cases.6 In particular, if the predictive model relating the 
explanatory variables to the response variables is a linear 
function of the adjustable parameters, finding the para- 
meters that minimize SSR is a simple matter of solving a 
system of simultaneous linear equations. The most atten- 
tion has been given to cases in which measurement er- 
rors are in only the response variables, with the explana- 
tory variables being known exactly. Least squares esti- 
mators are then unbiased, and if the measurement errors 
are normally distributed, they have the smallest variance 
of any possible unbiased estimator. Even if the predic- 
tive model is a nonlinear function of the parameters, 
having measurement error in only the response variables 
still makes least squares consistent, that is, unbiased in 
the limit of infinite sample size. 

Such conditions are not fulfilled by the model of equa- 
tion 2, which is a nonlinear function of the parameter K. 
In addition, measurement errors occur in all of the mea- 
sured variables, not only in the response variables.' As a 
result, there is no guarantee that least-squares parameter 
estimates are good by any standards. In addition, statisti- 
cal theory is unable to a priori identify estimators that 
have optimal properties for this model. Consequently, 
we have undertaken a qualitative, empirical approach to 
the problem. 

11. FITTING METHODS 

A. Standard Approach. 
In most NMR titration experiments, the parameters K 
and D are assigned by minimizing the unweighted SSR 
of equation 5 .  

N 

S S R = ~ ( G c a l c  pi-Gobs pi)' (5) 
r = l  

This is simpler than the SSR of equation 4; it counts 
only the observations of a single proton. If a binding 
study is performed in which the resonances of more than 
one proton are followed, K and D are determined sepa- 
rately for each proton. In principle, the observations of 
all protons should give the same estimate of K. In fact, 
measurement errors ensure that this will never occur ex- 
actly. When a binding study of a system with P observed 
protons is carried out, P different estimates of the associ- 
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AN IMPROVED METHOD FOR DETERMINING. . . 123 

ation constant are returned. A “best” estimate of the as- 
sociation constant is typically devised by averaging the 
estimates from the individual protons, or by disregarding 
all protons but the one the model was best able to fit. 

B. MULTIFIT. 

As a first step up from this simple analysis, we devel- 
oped a Pascal program (MULTIFIT)s to estimate a single 
binding constant for all of the observations in a binding 
study. If P protons are observed in a study, there are 
P+ 1 adjustlble parameters in the predictive model: K 
and the P D’s. The association constant K returned by 
this procedure is the true least squares estimate. It is 
more reliable than an estimate from any single proton, 
because it is based on more information. Furthermore, 
the D values returned are consistent with each other, 
which is not necessarily the case if the protons are fitted 
separately. This allows confident comparison of the D 
values of different protons. Such an ability is essential 
for describing the geometry of a complex. 

This procedure, nonetheless. has some drawbacks. The 
most severe is its assignment of equal weights to all ob- 
servations. For instance, it is common for different pro- 
tons to have values of D that are very different in magni- 
tude. Protons with 1a1g;2 absolute values of D will change 
their peak positions in an NMR binding study much 
more significantly than will protons with smaller D’s. As 
a result. an unweighted least-squares estimation proce- 
dure places the greatest relative importance on fitting the 
observations of the proton whose signals move the most. 
This is not the best use of all of the information available 
in the experiment. 

C. EMUL 

1. Design. 
To combat this drawback, we have developed a weight- 

ed least-squares fitting program (EMUL).8 This program 
minimizes SSR* (eq. 6), a different loss score than the 
SSR of MULTIFIT. 

In this equation, oPi is the estimated inaccuracy in pre- 
dicting the resonance of proton p in sample i. This value 
is determined by a first-order approximation of the influ- 
ence of each measurement error on the eventual magni- 
tude of the residual Scale p i  -aoobs pi. If this residual is af- 
fected by L measured variables xp each of which can be 
thought of as a random variable with variance a;, then 
the estimate of 6 is given in eq. 7.9 

2. Execution. 
The first step toward creating a procedure to minimize 
SSR* was to develop the means to evaluate SSR* itself, 
This required identifying the fundamental random vari- 
ables xp their uncertainties o ~ ,  and the derivatives 

m c a l c p i  - 6oobspi) 

aXj 
The identities of the fundamental random variables of 

an experiment depend on the design of the experiment it- 
self. Strictly, every measurement performed is a random 
variable. Binding studies are typically performed by 
combining stock solutions of host and guest together 
with additional solvent in an NMR sample tube, and 
recording the spectrum. The values of [HI, and [GI, are 
then altered by adding more host solution, guest solu- 
tion, or solvent, and the NMR spectrum is again record- 
ed. The steps of adding solution and recording the spec- 
trum are repeated several times, and the spectra of un- 
complexed host and guest are measured independently. 

The fundamental random variables contributing to a 
single observation are: 

The host and guest concentrations, [HI, and [GI,, of 
every stock solution used to make up the sample, 

the volume V, of each solution aliquot added to the 
sample tube, 

The calibration I of the delivery devices (pipets or sy- 
ringes) employed to add the aliquots, and 

the NMR peak position measurements &,spi and &freep 

Uncertainties in stock solution concentrations will 
vary considerably from system to system, depending on 
the amount of material available, the method of concen- 
tration measurement, etc. In our experience the uncer- 
tainties here can be large - perhaps as much as k 5%. 
Aliquot volumes are determined by two related but inde- 
pendent random variables: the precision and accuracy of 
delivery devices. Precision is the reproducibility of vol- 
umes added by a device. Accuracy is a measure of the 
likely calibration error of the delivery device. The vol- 
umes of all aliquots delivered by a single device will be 
mis-measured by the same proportional amount; for in- 
stance, they all may be 2% too low. Thus, the difference 
between an aliquot’s true and measured volumes is 
(measured value) X (calibration error) + (reproducibility 
error). The final fundamental random variables consid- 
ered are the NMR measurements. Because NMR signals 
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124 BARRANS E T A L  

Table I Names of experimental designs in Monte Carlo studies. 

K = < I  

design 1 #’ iu‘ 105 loo 

( 1  1 adding host H3 H4 H5 H6 
(2)  adding guest G3 G4 G5 G6 
(3) adding diluent D3 D4 D5 D6 
(4) continuous variation (Job) J3* J.1 J5 J6 
( 5 )  constant [HI,, v3 V4 v 5  V6 

“In M ’ *Not Included In vmuldtions 

are well-resolved and reproducible, the errors in these 
variables are generally small. The principal source of 
such error is the digitization of the spectrum: the peak 
position cannot be known more specifically than the dis- 
tance between two points. Another possible contributor 
to peak position measurement error is peak width. If a 
peak is very broad, as often happens in exchanging sys- 
tems such as these, it can be difficult to tell exactly 
where its center lies. 

Once the fundamental random variables have been 
identified, it is necessary to determine their impacts 
upon the observations according to equation 7. This task 
IS tedious but straightforward: it requires only differenti- 
ation of (6,,,, ,,, -aob\ ,J with respect to each of the fun- 
damental variables. The details of determining these de- 
rivatives are given elsewhere.s 

111. COMPARISON OF FITTING METHODS 

We will now compare the performance of a number of 
methods of data fitting. including the approaches de- 
scribed here. First we will evaluate EMUL. and then a 
variety of other procedures in current use 

A. Design. 
In order to compare different fitting schemes to each oth- 
er, we have tested them on artificial data sets generated 
by Monte Carlo simulation experiments.” The goal is to 
generate a representative series of “experiments”, each 
of which can be addressed using each of the methods of 
interest. As each data set is fitted by the regression pro- 
cedures being compared, parameter estimates from each 
procedure are created. The behavior of the estimates 
over a large number of data sets provides an empirical 
basis for the comparison of the different procedures. 

Such comparisons were carried out for a variety of ex- 
perimental designs, covering the range of binding con- 
stant values that can reasonably be determined from 
NMR titration experiments. Five basic types of experi- 
mental design were modeled: (1) adding aliquots of host 
stock solution to a sample tube containing guest; (2) 
adding aliquots of guest stock solution to a sample tube 
containing host; (3) adding aliquots of diluent to a sam- 

ple tube containing both host and guest; (4) a Job or con- 
tinuous variation study, in which ([HI, + [GI,) is the 
same in all samples, and the mole fraction of each 
species is varied in equal steps from 0 to I ; and ( 5 )  mak- 
ing [HI,, the same in all samples, changing only the con- 
centration of guest. Each experiment involved fifteen ob- 
served samples; in each of these samples [HI,, was be- 
tween 10 and 200 pM, and [GI, was between 10 and 500 
pM. Two proton signals were followed, one from the 
host and the other from the guest. D of the host proton 
was -100 Hz, and D of the guest proton was +500 Hz. 
For each experimental design, four association constants 
K were considered: lo’, lo4, lo5, and lo6 M-I. Each of 
these twenty experiments was designed to provide a 
good measure of the association constant by keeping the 
fraction of the minor component bound between 0.2 and 
0.8.’ These sets are summarized in Table I. When the as- 
sociation constant was lo3, the method of continuous 
variation (design 4) proved to be an extremely poor ex- 
perimental design. Small simulated measurement errors 
led to a preponderance of terrible parameter estimates. 
As a result, this set was not included in the large study; 
only the remaining nineteen sets were used. 

Except as specified otherwise, measurement errors fol- 
lowed normal distributions as follows. The standard de- 
viation of stock solution concentration measurements 
was 5%,  and the standard deviation of NMR peak posi- 
tion measurements was 0.5 Hz. Aliquot volume errors 
and delivery device calibration errors depended on the 
delivery device used. Delivery device accuracy and pre- 
cision error distributions were adapted from the specifi- 
cations for Eppendorf Varipette 48 10 piston stroke 
pipettes. 

B. Testing Error Propagation. 
The first comparisons performed were intended to assess 
the importance of propagating the measurement errors in 
each of the fundamental explanatory variables. In each 
of these comparisons, 1500 Monte Carlo repetitions of 
each of the nineteen experiments under consideration 
were performed. The data set from each repetition was 
subjected to three types of least-squares fit. The first 
method minimized the sum of squares of the unweighted 
residuals, SSR (equation 4). The third minimized the 
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sum of squares of the weighted residuals, SSR* (equa- 
tion 6), with the weights calculated by propagation of all 
measurement errors according to equation 7. The second 
also minimized a weighted sum of squares, but with the 
errors in one type of measurement not propagated. This 
was to determine if propagating each of the different 
types of measurement error was beneficial or detrimen- 
tal. If it is disadvantageous to propagate a certain type of 
measurement error, then this abbreviated procedure 
should perform better than the one with full propagation. 

C. Evaluating Performance. 
Six measures of performance of the fitting methods were 
calculated under each experimental condition. These 
measures were the medians and standard deviations of 
the three fitted parameters K, D,, and D,. These provide 
a way to evaluate the bias and variance of the parameter 
estimates from the fitting procedures. Medians were 
evaluated in preference to means because the median is a 
more robust measure of central tendency. The perfor- 
mances of the three fitting procedures with respect to 
each of these six measures were compared and ranked. 
The method with the best performance in a measure re- 
ceived the rank of 1, the second best received the rank of 
2, and the worst the rank of 3. If some procedures per- 
formed indistinguishably well (if they were tied), each 
received the same rank, which was the average of the 
ranks they would have received if they had been slightly 
different. 

Consider as an example the replications of experiment 
H3, in which the association constant is lo3 M-' and the 
protocol follows experimental design 1. The distribution 
of the estimates of K from the unweighted minimization 
had a standard deviation of 138; from both the fully- and 
partially-weighted procedures, the standard deviation of 
this same estimate was 149. Thus, the unweighted proce- 
dure received a rank of I ,  and the others both received 
ranks of 2.5. The medians of all three of these distribu- 
tions were 1.00 X lo3 M-I, however, so each procedure 
received a rank of 2 for this measure. 

Each study thus produced 19 X 6 = 114 sets of rank- 
ings. In order to determine if one fitting procedure per- 
formed significantly better overall than any of the others, 
these rankings were evaluated by a Friedman-Cochran- 
McNemar test. This nonparametric statistical test is de- 
signed to determine if there is a significant difference be- 
tween s subjects that have been ranked by N independent 
judges. Let us define the total rank Ri of the ith subject as 
the sum of the N ranks received by that subject. 

N 
Ri =I rankij 

In our case, some of the rank sums Ri contain tie scores. 
The test statistic is then 

j=1 

Q* = 

2 -  
Ns(s  + 1) 

The index dkj here is the number of subjects assigned 
rank k by judge j .  Each judge assigns e, distinct ranks. If 
there are no ties, then e, = s; if some subjects are tied, 
then 1 5 ej < s. If there is no difference between sub- 
jects, ranks will be assigned randomly and uniformly, so 
that all rank sums R j  will be similar. The statistic Q* will 
then be distributed as a x' variable with s-1 degrees of 
freedom. A very large Q* rejects the null hypothesis that 
the subjects are indistinguishable. 

In this evaluation of fitting methods, the subjects are 
the fitting methods and the judges are the sets of experi- 
mental conditions. It is most informative to make paired 
comparisons of fitting methods, that is, to compare one 
method to one other. With three fitting methods, there 

/ 3 \  are 

such comparisons to make. These comparisons can be 
carried out by the Friedman-Cochran-McNemar test, 
with s = 2 .  Since s is 2 instead of 3, slightly different 
ranks from those assigned from the full set of three fit- 
ting methods must be used. These new ranks are easily 
derived from the old ranks: the subject with the lowest 
rank is assigned a new rank of 1, and the subject with the 
highest rank is assigned a new rank of 2. If the subjects 
are tied, both receive new ranks of 1.5. These ranks de- 
termine Q*. If the two subjects are indistinguishable, Q* 
will follow the 

distribution. The null hypothesis of indistinguishability 
is rejected if Q* falls above some cutoff for this distribu- 
tion. The 95% cutoff for this distribution, for instance, is 
3.84. 

The performance of these three fitting methods ac- 
cording to the six different measures can be conveniently 
summarized in the following manner. If one method per- 
forms significantly better than another, that is, if Q* 
from a head-to-head comparison is greater than 3.84, 
then the winning method receives a score of + I  and the 
losing method receives a score of - 1. If no significant 
difference is found between the two methods, each re- 
ceives a score of 0. The scores received by a method in 
its comparisons to the other two methods are added to- 
gether to give a total score for that measure. 

For example, let us examine the standard deviations of 
K estimates in the test of propagating aliquot volume re- 
producibility errors. In this comparison, full propagation 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
0
3
 
2
9
 
J
a
n
u
a
r
y
 
2
0
1
1



126 BARRANS E T A L  

Table 11 Relative performance\ of fitting methods in a test of error propagation. 
_________ 

K D/ D2 

crror 
propagatroil nred \de\ inecl sdev med sdev total 

aliquot volume errors 
none 0 -1 0 -2 0 -2 -6 

partial 0 0 0 1 0 1 2 
full 0 2 0 1 0 1 4 

none 0 -2 -2 -2 0 -2 -8 
partial 0 I 1 1 0 1 4 

full 0 I I 1 0 1 4 

none 0 -I -I - 1  0 - 1  -4 
partial 0 0 0 0 0 - I  -I 

full 0 I 1 1 0 2 5 

none 0 -I 0 0 0 - 1  -2 
partial - 1  0 0 0 -I 0 -2 

full 1 I 0 0 I 1 4 

none 0 -2 0 0 0 -2 -4 
partial 0 I 0 0 0 1 2 

full 0 I 0 0 0 1 2 

none I -2 I 0 0 0 0 
partial -7 I -2 0 0 0 -3 

full 1 I I 0 0 0 3 

device calibration errors 

\lock solution concentration errors 

all NMR spectrometer errors 

6,,,, errors only 

S,,,, errors only 

of errors proved to be significantly superior both to no 
error propagation at all and to propagation of all errors 
except for aliquot volume reproducibility errors. 
Furthermore, the partial propagation method was signifi- 
cantly better than the method of no propagation at all. 
The scores assigned are thus 1 + 1 = 2 to the full propaga- 
tion method, 1 - 1  = 0 to the partial propagation method, 
and - 1 - 1 = -2 to the no propagation method. 

Table I1 shows the total scores given to the three fit- 
ting methods for each of the six measures of fitting 
method performance. The final column gives the sum of 
scores assigned by these six measures for each of the fit- 
ting methods. Comparison of the total scores for the 
competing methods reveals which method performs best 
overall. 

Six separate studies are summarized in Table 11. In all 
of these studies, the fitting method that does not propa- 
gate errors performs worse overall than the method em- 
ploying full error propagation. In no case does propaga- 
tion of a subset of the measurement errors perform better 
overall than does full propagation. Consequently, we be- 
lieve that the full  error-propagation method is justified. 
There is no indication that propagating fewer measure- 
ment errors would produce a better estimation proce- 
dure. 

D. Other Fitting Procedures. 
A similar series of Monte Carlo studies was also per- 
formed to compare a larger class of fitting procedures. In 

these studies, five fitting methods were compared. The 
first of these methods is a currently popular method for 
finding K from NMR titration experiments, developed 
independently by Creswell and Allredi2 and by Horman 
and Dreux.I3 This method involves using Sfree as an ad- 
justable parameter instead of an independently-measured 
variable. Conceivably, this approach could have an ad- 
vantage over methods in which is directly measured, 
because the parameter estimates are unaffected by errors 
in the determination of tifree. In other methods (such as 
EMUL), if Sfree is measured erroneously, the model is 
systematically compromised. The method of Creswell 
and Allred determines Sfrce from the entire data set, in- 
stead of relying on a single measurement. Thus, method 
(I)  involves fitting the entire data set at once by adjusting 
a single association constant, and the free chemical shift 
and saturation shift (Sfrce and DJ for each proton. All 
observations are weighted equally, and no use is made of 
an independent measurement of a proton’s free chemical 
shift. When P protons are observed, this method has 
2P+1 adjustable parameters. As commonly implement- 
ed, this method is applied to each proton separately, pro- 
ducing K,,, afree p,  and Dp (3P adjustable parameters). 
However, we have used the MULTIFIT approach here. 

We also considered four other methods. (11) Fitting the 
entire data set by adjusting the same parameters as in 
method I, but treating an independent measurement of a 
proton’s free chemical shift as an additional obser- 
vation. This adds one squared residual term (S,,, ,, - 
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to fit the score SSR for every proton observed. 
This method is intermediate between methods I and IV. 
(111) Fitting the observations for each proton separately. 
The association constant K and saturation shift Dp are 
optimized for the observations on a single proton, and 
this process is carried out for each proton. After all ob- 
servations have been modeled in this manner, the esti- 
mates of K from each proton are averaged to give the 
overall “best” estimate of K.  This is the standard method 
described in section IIA. (IV) Fitting the entire data set 
by adjusting a single association constant K and the satu- 
ration shifts D,, of all observed protons. All observations 
are weighted equally. This procedure has P+1 adjustable 
parameters, and is the method employed by MULTIFIT. 
(V) Fitting the entire data set by adjusting the association 
constant K and the saturation shifts D,, of each observed 
proton. Observations are assigned weights by propagat- 
ing all measurement errors according to equation 7. This 
is the method used by EMUL. 

These studies were carried out in a manner similar to 
that used for testing the propagation of the different 
classes of measurement errors. Each of the 1500 Monte 
Carlo replications of each of the nineteen experiments 
was fitted by each of the five fitting methods. The per- 
formances of the fitting methods according to the fitted 
parameter medians and standard deviations were evalu- 
ated and ranked for each set of experimental conditions. 
Head-to-head comparisons of pairs of fitting methods 
were evaluated by using the Friedman-Cochran- 
McNemar Q* statistic, based on the relative ranks of the 
two compared methods. Since five subjects were evalu- 
ated, there were 

pairwise comparisons for each performance measure. 
Each method received a score of 1, 0, or - 1 from each of 
its pairwise comparisons, which were added together to 
give a total score for the method. These total scores, and 
the sums of these scores over the six performance mea- 
sures, are reported in Table 111. 

Clearly, the superior method for fitting NMR data un- 
der the experimental conditions considered is V, the 
method that assigns weights by propagating measure- 
ment errors. On the other hand, I, which eschews experi- 

Table 11. Relative performances of fitting methods 

mental measurement of uncomplexed chemical shifts, is 
the poorest performer. 

The performance of method I would probably improve 
if the experiments were designed to sample the entire 
range of chemical shift values for all the protons ob- 
served. This would require the fraction bound of each 
species to range from near zero to near unity in each 
study. Experimental conditions often prohibit such ob- 
servations if one is unwilling to measure the spectra of 
host and guest individually. For example, if the associa- 
tion constant of a given hodguest pair is lo6 M-’, both 
species are 80% bound if the total concentration of each 
is 20 pM. It is often not practical to reduce the fractions 
bound by making the sample more dilute, because NMR 
is not sensitive enough to detect lower concentrations. 
Raising the concentration of one species so that it 
swamps the other would allow observation of the major 
component in the almost entirely free state, and of the 
minor component in the almost entirely bound state. 
Such an observation is informative for determining 6,, 
of the major component and hound of the minor compo- 
nent, but it contains practically no information about the 
association ~ o n s t a n t . ~  

We have also evaluated the extent to which the various 
fitting methods are “robust”, this is, able to treat data 
sets that contain unusually large experimental errors. For 
example, we have modeled a case in which two indepen- 
dent stock solutions of the same intended concentration 
were used for one of the species. In the experimental 
protocol in which host stock solution aliquots are added 
to the sample, for instance, every other such aliquot was 
taken from the second stock solution. This design was 
contrived to test the performance of the fitting methods 
when the stock solution concentration behaves more like 
a random error and less like a systematic error. All the 
experimental designs were perturbed in this fashion, ex- 
cept for the design in which aliquots of diluent are added 
to the sample. The number of judges in this study, N, was 
therefore I5 instead of 19. The outcomes of the head-to- 
head comparisons between fitting methods are presented 
in Table IV. 

Method V is again the best performer under these ex- 
perimental conditions. Method I is no longer the worst 
performer; it has been eclipsed by method 111, in which 
separate estimates of K from the individual protons are 

~ ~ 

K D/ D2 

merhod aed sdev nred sdev med sdev [oral 

1 0 -2 - 1  -2 0 -2 -1 
I1 0 1 0 1 0 0 2 
I11 0 0 0 -3 0 0 -3 
IV 0 - I  0 0 0 -1 -2 
V 0 2 1 4 0 3 10 
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Table IV Relative performances of fitting methods when a dJplicate stock solution is used 

K D, D2 

method nied sdev med sdev med sde v totul 

I 
I1 
Ill 
IV 
V 

0 - 1  0 -2 0 - I  -4 
0 - 1  0 I 0 - 1  - I  
0 - I  0 -3 0 - 1  -5 
0 - I  0 0 0 - I  -2 
0 4 0 4 0 4 12 

Table V Relative performances of fitting methods when the rtandard deviation of the second observation for each proton is 20 Hz. 

K D, D2 
method med sdei. ined sdev rned sdev totul 

I 
I1 
111 
IV 
V 

- 1  -2 -4 -3  -4 -3 -17 
I 1 I I I 0 5 

-3 -2 I -3 1 0 -6 
I - 1  I 2 1 - I  3 
2 4 I 3 I 4 15 

Table VI Relative performances of fitting methods when the standard deviation of every a,,, is 20 Hz. 

K D, DZ 
rnerhod n7ed sdei. med .sde\, nivd sdev totul 

I 1 - 1  I -3 1 - 1  -2 
I1 I 0 I 2 2 0 6 
111 I - I  I -2 I I I 
IV I - I  I 2 0 0 3 
V -4 3 -4 1 -4 0 -8 

Table VII Relative performances of titting methods when the standard deviation of S,,,, of only the host proton i s  20 Hz. 

K Dl Dz 
method rncd sriei. nied S d P l ,  tnvd sde1, / ( l / t l /  

I 0 0 0 - 2  0 - 1  -3 
I1 
111 
IV 
V 

2 0 0 2 0 0 4 
- 1  0 0 -2 0 I -2 
0 0 0 1 0 0 1 

- 1  0 0 I 0 0 0 

averaged to give the overall estimate. Apparently, this 
method is more vulnerable than the others to vagaries in 
the stock solution concentrations. This difference may 
also be a random fluctuation: visual inspection of the 
five methods under this set of experimental conditions 
and the set summarized in Table 111 does not reveal any 
qualitative differences between these two sets. 

The effect of imprecise NMR measurements was in- 
vestigated in a series of studies. Table V summarizes the 
results from a study considering a single bad spectrum. 
In every experiment in this study, the observations of 
both the host and guest protons have a standard deviation 
of 20 Hz in the observations of the second sample. As 
may be expected, method V performs exceedingly well 
under these conditions. 

Another study investigated the effect of extremely im- 
precise measurements of 6free of both protons. In this 
study, the standard deviation of these measurements was 
20 Hz. Since method I does not use these measurements, 
one might expect it to perform well under such condi- 

tions. The outcome of this study is summarized in Table 
VI. In this instance, the performance of method V is the 
worst. Although the large measurement errors in Gfrec 
were propagated to assign weights to the observations, 
this method was unable to obtain good parameter esti- 
mates. Like methods 111 and IV, it has only one opportu- 
nity to estimate 6free, and that is in the measurement it- 
self. If the measurement is bad, so is the estimate of 6,, 
and no subsequent observations can improve it. Still, the 
inferior performance of this method in comparison to 
methods I1 and I11 indicates that the propagation of er- 
rors is in fact detrimental to the parameter estimation 
when afree is poorly known. On the other hand, method I, 
which is the only method that is not affected by the error 
in still does not perform better than methods 111 or 
IV. The best performer is 11, which considers the mea- 
surement of 6,, to be just another observation. 

This effect was further investigated by making the 
measurement of 6free of only the hosr proton imprecise. 
This study is summarized in Table VII. In this case, 
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Table VIII Relative performances of fitting methods when the standard deviation of all NMR sample observations 
deviations of &..measurements of both Drotons are 0.5 Hz. 

are 5 Hz, but the standard 

~ 

K D, D2 
method med sdev med sdev med sde I' totcrl 

I -2 - 1  0 -4 -2 - 1  -10 
2 3 2 0 I I I 8 
3 -3 -3 0 - I  - 1  -3 - 1 1  
4 2 1 0 2 3 2 10 
5 0 1 0 2 - 1  1 3 

Table IX Relative performances of fitting methods when the standard deviation of all NMR measurements are 5 Hz. 

K D/ D2 
method med sdev mrd sdev med sdev toial 

1 
11 
111 
IV 
V 

~~ 

-2 -1 -2 -4 0 
3 2 1 1 3 

-2 -3 I 0 -2 
3 I 3 3 2 

-2 1 -3 0 -3 

- I  
2 

-3  
I 
I 

-10 
12 
-9 
13 
-6 

propagation of errors appears superior to method I.  
Method 11 is still superior overall, but the margin be- 
tween all methods has narrowed considerably. 

Two more variations in NMR observation uncertain- 
ties were studied. In these, all of the sample resonances 
6obc were assigned an uncertainty of 5 H Z . ' ~  In the first 
case, the free chemical shifts of both protons were as- 
signed uncertainties of only 0.5 Hz; in the second case, 
the free chemical shifts were also assigned uncertainties 
of 5 Hz. The relative performances of the fitting methods 
under these two cases are summarized in Tables VIII and 
IX, respectively. 

In the first of these cases, in which measurement could 
have given good estimates of 6free, method I performs 
comparatively poorly. The best performances are by 
methods I1 and IV, which consider all observations but 
do not propagate errors. Method V, which propagates 
measurement errors, has somewhat intermediate perfor- 
mance. In the second case, in which all NMR observa- 
tions are equally poor, the best performers are again 
methods I1 and IV. Methods I and I11 are again the worst, 
but the performance of method V has descended almost 
to their level. It should be noted that all methods per- 
formed poorly in these cases. 

These results indicate that propagation of errors is un- 
able to compensate for large uncertainties in 6,, or for 
large and similar measurement errors in all of the values 
of iSoba. It is unarguably inappropriate to take a measured 
value of as the final word if that measurement is im- 
precise; clearly, a method such as I1 is then a better 
choice. However, NMR peak position measurements are 
typically not imprecise. Peak positions referenced to an 
internal standard are very reproducible. Even if a peak is 
broad, an assignment of its center is seldom uncertain to 
more than a small fraction of the peak width. Therefore, 
the most relevant cases to consider when evaluating fit- 

ting methods are those in which the NMR errors are neg- 
ligible. In such cases, method V appears to be ~uperior. '~ 

IV. CONCLUSIONS 

We have developed a method for determining the associ- 
ation constant K and saturation shifts D of a hostlguest 
pair from variable-concentration NMR titration experi- 
ments. This method minimizes a sum of squared weighr- 
ed residuals; weights are calculated by propagating mea- 
surement errors according to equations 6 and 7. Monte 
Carlo studies simulating realistic measurement errors and 
a variety of experimental designs demonstrate that this 
method performs well in comparison to other methods. 

V. EXPERIMENTAL SECTION 

A. Data Sets. 
Full details of the various experimental designs are pre- 
sented e l~ewhere .~  We present here the range of %- 
bound covered by the various experiments described in 
Table 1. Data are presented as: Expt (range % host 
bound; range % guest bound). H3 (1; 5-16); H4 (66-80; 
2-40); H5 (28-71; 22-85); H6 (13-86; 58-99); G3 (21-35; 
7-14); G4 (63-83; 17-42); G5 (14-94; 23-87); G6 (58- 
100; 19-86); D3 (11-31; 4-12); D4 (50-78; 20-31); D5 
(64-80; 64-80); D6 (50-78; 20-31); 54 (4-64; 4-64); J5 
(10-89; 10-89); J6 (46-92; 46-92); V3 (1-32; 6-9); V4 (5- 
81; 16-49); V5 (16-94; 23-81); V6 (73-89; 52-73). 

B. Monte Carlo Comparisons. 
We summarize the basic Monte Carlo procedure here - 
further details are provided el~ewhere.~ A Monte Carlo 
comparison test is carried out in the following manner: 
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Repeat 1500 times: 

Draw random calibration, or accuracy, errors for each 
delivery device used in the experiment. All volumes 
delivered by this device will subsequently be biased 
by this accuracy factor. The error for each device 
stays constant throughout the course of the repetition. 

Draw concentration errors for each stock solution. The 
simulated stock solution concentrations will differ 
from the intended concentrations. 

Create a sample by adding solution aliquots to the 
sample tube. The volume of each aliquot is deter- 
mined by multiplying the appropriate delivery de- 
vice’s Monte Carlo accuracy factor I by the intended 
aliquot volume and then adding to this value a repro- 
ducibility error. The reproducibility error will be an 
absolute volume, say 0.03 pl, and is drawn afrzsh for 
each aliquot. 

The sample volume is obtained by adding this aliquot 
volume to the volume of the sample previously in the 
tube. The total host and guest concentrations are deter- 
mined from these volumes and from the concentrations 
of the combined solutions. 

Draw an error for the measurement of for each 
proton. The Monte Carlo value of 6,, is obtained by 
adding this error to the measured value. 

Draw an error for the observed chemical shift of each 
proton recorded in a sample. Each Monte Carlo “er- 
ror-free’’ observation is generated by applying equa- 
tion (2) to the assumed parameter values and the 
Monte Carlo values of [HI,, [GI,, and 6free. To this re- 
sult is added the random observation error. 

Subject the data set to analysis by each regression pro- 
cedure. Each procedure generates estimates for every 
adjustable parameter. 

After this set of 1500 replications of the experiment is 
complete, the medians and standard deviations of the pa- 
rameter estimates from each regression procedure are 
calculated, and the performances of the different proce- 
dures are compared with each other. Parameter estimate 
medians are evaluated by their distances from the true 
parameter value, and parameter estimate standard devia- 
tions are evaluated by size. 

Random Numbers 
Uniform deviates were generated by the supplied linear 
congruence generator drand48 (standard C library in a 
Silicon graphics 4D/220 GTX workstation) and 
shuffled.” The generator was initialized at the start of 
each run with the value of the current system time. 
Normal variates were constructed from the uniform vari- 

ates by the Box-Muller method,Is and Cauchy variates 
were constructed from the uniform variates by a tangent 
transformation. l 9  The generated Cauchy and normal 
variates were verified by the Kolmogorov-Smirnov test2’ 
to follow their intended theoretical distributions. 
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